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Cyclic XY model and exotic statistics in one dimension
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We examine the consequences of the exchange statistics in one-dimensional systems with compact topology.
As examples of nontrivial statistical behavior we calculate exactly the partition function and correlators for
systems of freg particles on compactified chains. In particular, we consider a spiX-¥/2hain with periodic
boundary conditions that corresponds to the casgq-=ef1. For the case we report a representation of the
two-point correlation functions at finite temperatui81063-651X96)50708-7

PACS numbgs): 05.30—d, 11.30.Pb, 75.10.Jm

In the last decade there has been considerable interest in Presently we will consider a gas of freefermions with
various deformations of quantum statistics which interpolatehe Hamiltonian(qXX mode):
between the Bose and Fermi cases. Such deformations can
be separated into the deformations of the exchange phase
which appears under the permutation of partidkeschange
statistics with braidind1] or without it [2]) and deforma-
tions of the Pauli principléso called exclusion statisti¢8]). +qA;valay+1/2B,ala; +H.c. 3
While the last can be defined in any space dimension the
possibility of introducing nontrivial exchange statistics cru- It turns out that the partition function and correlators for the
cially depends on the dimension and the topology. model can be calculated exactly, which should shed light on

In one dimensior{1D) for particles with a hard-core con- the whole problem.
dition on a finite interval, no real permutation is allowed and, ~First we describe and discuss our main results for the
hence, the exchange phase never plays a role. The situatigermodynamical quantities associated with the Hamiltonian
changes if the interval is compactified to a circle with peri-(3)- We will outline the calculations at the end of the paper.
odic boundary conditions. This leads to a nontrivial loop The first result is the exact expression for the partition func-
which provides new possibilities to permute particles via thetion of the systemZ="Tr ex —B(H—uN)], at temperature
“glued” boundary. Then the effects of exchange statistics1/8 and chemical potential, whereN=3M ,a'a; is the
immediately exhibit themselves as we demonstrate in thisumber operator foq particles:
paper. In the framework of our lattice model we calculate
exactly the partition function and correlators and, moreover, 1 m
the result is remarkably simple. The partition functions and Z= HEO Z 9 PZy, Zoy=I1 (1+greflreckin),
correlation functions for a system with such exchange statis- —0p=0 K"
tics can be written as a double sum of terms indexed by all 4
possible deformations of an exchange factor and all permu]:|
tation loops in the systems. This suggests that the theory ma
be reformulated as a theory of loops with weights defined b
the deformed exchange factors. Such a theory could then
generalized to higher dimensions.

The point is illustrated by the example of frgdermions,
i.e., the particles with deformed exchange statistics define
by the algebra of commutation relations for the creatam- 20
nihilation) operatorsa (a;) at theith site of a cyclic chain e(k™)=B+2Acogk"), ki"'=—(m—Ir/n), (5
with lengthM. The relations are split into two parts: the first M
describes the fermionic algebra on each site,

M
H= Zg (Ai,i _1aiTai _1+ 1/28iai1-ai)

n-1n-1

ere the notatiore(k|") was introduced for thé"th eigen-
alue of the hopping matrifA;;|| on the circle withg' pe-
Eodic boundary conditionéwhich corresponds to the substi-
tution of q'A;y instead ofA;y, in the hopping matrix For
the homogeneous chaid(;_;=.7) these eigenvalues have
Hwe form

withm=0, ... M—1. Using expressiof¥) we immediately
obtain the representation for the distribution function
n(B,w) of the q particles in terms of transmuted Fermi-

and the second gives the exchange statistics with deform%j-llfg_le)((%r@()]. Bose-Einstein  functions  fo(x) =1/

tion parameteg=e?"""", n=r=1,
n-1n-1

aaj=—qaa, aa=-q ‘aa, ¥) n(ﬁ,m=|20 pZOq—P'E f (B (KM= w)Zp, INMZ.
2 2 &

ala+aa’=1, a?=0, (a)'=a, (1)

where the ordering £i<j<M is assumed. (6)
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So we see that in Eq6) q-deformed Fermi-Dirac functions, if we identify A,=A, and the creatiofannihilation) opera-
with all allowed powers of the deformation parametgr tors with spin uppeflower) operators as usual:

make contributions. Such functions naturally interpolate be-

tween the fermionic distribution functionqg&1) and a=s =s'—is!, al=s =s'+is. (10
bosonic distribution functiond= —1). Moreover they pick _ ) )

up all g-periodic boundary conditions which also reflects theAfter the introduction of anisotropyAy,)=2(A*y) the

q exchange factor gained due to the permutation of particleslamiltonian(9) becomes the Hamiltonian of a spin-1/2 com-

via the loop. pactXY chain in the magnetic fielB. In contrast to previous
In the same way simple exact results for correlation funcWork, where quantities were calculated in thermodynamical
tions can be obtained. For example, limit [5—9], we obtain exact formulas for the partition func-
tion and correlators for the Hamiltonian of t& model in
(ay(n)al.4(0)) compact lattice topology. In the thermodynamical limit sta-

" n—1 n—1 tistical effects, which are proportional to the inverse size of
e ™M(B-w) -~
_ E 2 q_|pDetC| (D(CL () @) the system, M, are negligible and the formulas of the paper
nZ < i P pr LD are transformed into the known results. However, there is a
field where boundary conditiorere relevant Recently a lot
wherelL is a relative coordinate and the matfixis defined of attention was attracted by the theory of the so-called

by the relation aggregates, i.e., molecular aggregates with an unusually
sharp absorption ban{10], [11] and references thergin

CL(D) = iZ (el )= +ikT y(m —m") The main advances were related with the use of the exact

P ‘ Mk|m+1 results for 1D chains. Frenkel excitons in such long aggre-

gates obey the Paulionic commutation relatiph|, or, in a
more general cagé we take into account retardation effects
[13]), g particle commutation relations. In the theory of the
optical response and spectroscopy of long cyclic molecules
X[1+(q 1-1)6(L-m")] (8) the thermodynamical limit is not appropriate. On the other
hand, theXY model recently arose in models of adsorption
(here we used the lattioe symbol which is continuous from Processes with diffusional relaxati¢h4]. Here the compact
the righ). We checked our formulas for the cases of smallcase is also interesting. The same can be said about the ap-
M by straightforward calculations. plication of results to the theory of defectons where the sta-
The note about picking up afj-periodic boundary condi- tistics of defectons is exactly Paulionic statisti¢S]. Let us

tions allows us to look at the problem from a different posi-29ain list the main results. _
tion. Indeed, from the original form of the Hamiltoni#8), The partition function of the mod&l(;3,B) contains four
which is quadratic in the creatio@nnihilation) operators, it terms, two of which have a fermionic nature and the others

is not difficult to see that, using the appropriate diagram1ave a bosonic ones:
matic techniquéfor example in they-field techniqud4]), all _ _

contributionsq to the therz)rmodyrfgmical quan?ities will be Z=3(Z{ +Z¢ + 1025 ~11Zy). (12)
given by vacuum diagrams with some exchange factors. An
this does not depend on the space dimension. Let us no
stress again one of our main results concerning gheX
model: the partition functions and correlation functions for a 77 =e BBMIZ[] @fE(k2)2(1 4 @ FE(kL))
system with such the exchange statistics can be written as a K

double sum of terms indexed by all possible deformations of

exchange factor and all permutation loops in the systems. Zi:eﬁBMIZH e FE(K)I2)(1 — g~ BE(K-))
This suggests that the theory may be reformulated as a b Ky '
theory of loops with weights defined by the deformed ex-

change factors. This may prompt an ansatz for the partitiofior systems with the energy spectra,

function innD after the summation of contributions for dif- ZekOT?
ferent loops: sums over all loops in the configuration space, YSIN(K~

with all allowed g-periodic boundary conditions for them E(k+)=[B+2Acogk.)] \/1+ [B+2Acogk.)]?
and all possibleq deformations of Fermi-Dirac construc-

tions. and antiperiodidperiodig boundary conditions,

In the particular casg= — 1 the Hamiltonian(3) can be
realized as a Hamiltonian of the spin-1/2 compact
XX-chain in a magnetic fiel® (for the sake of simplicity we
deal with the homogeneous case

M We have also calculated correlation functions for various
_ X 7 spin components. One of involved correlation functions is
H_EZ (ASiSi_1+A)S/S]_ 1 ~BS) —Bis) presented here. Using the  mutipliers g, (8)
=chBE* co¥shBE, , ,,=arcsin(—2ysink/E,) and the
+ASISuTASISy + MB/2, C) matr?x hotatiori;shﬁ . 2y )

P
+ q_z e(T—B)(E(k[n)—M)-*-ik,m(m’—m”)
K"

?{;}erezfi (Zy,) are fermionic(bosoni¢ partition functions,

k2T e 1), ke=2Tm m=0,... M—1
*_V(er ), ,—Vm, m=0,... M—1.



1
D =diag —————
P d'a‘\{ gk*(/%—it)>'

sing,sinh( B—it)E,
29 (B—it)

1 _ _
kk’

B k‘_k!

oomae{ L

LM
(U k, = MmZ:l gimtks k=),

(2)

sing,sinh(itE,)
By = T og (it)

2gy (it)

- Ok, -k’

gy (it)

1 M
_ im(k_—k)
(U )k, k. MmE:1e *

we have found (ai(t)a],;(0))=(1/2Z){K{ +K;
+K; —K,}, with

M(M—1)

BMB
2 2

2

Ki=(-1" 2 P(G")e

1/2

X I g, (=011 gy (it

1 L
X — e'k:_'kr(l-+1)
Mk?k;

f(b) | +f(b) A f(b)y—t -1

X(QL7+TL7(Qx™) rSt)k;kt- (12

Here P(G) is the Pfaffian of block matrixG,
= Q)Y

f(b) _ = *

G:<>_(_Qf+(b) o | (13
with  blocks Q®P=w®pP+uipBy,, TI®
—2AWOBOW O LyiB@U.},  S.=-2{BY

+UTB®U.}, and at the end

ind (1! —
f(b) _ _ iM 1/2i (k" —K)(L+1)
Wk,k’ - 6k,k’ 2M 1 ; e .
sinz (k' —K)
Indices “+"” and “—" at matrices label the momentum

space{27(m+ 1/2)/M} or {27m/M} in which these matri-
ces are considered. For the caseyef0 we return to Eq(7)
with g= —1 which was checked by computer symbolic cal-
culations for small values dfi. On the other hand, our nu-
merics did not support the result of R¢1.0], where it was
claimed that the formula for the correlator of the cyckX

model was obtained. In the thermodynamical limit we pro-

duce results consistent with those of R

Now we outline the calculational procedure which leads

to expression$4) and(6) and then give the modification for
the case of theXY model (9). To this end we apply to the
creation(annihilation operatorsa;r (a;) the Jordan-Wigner

transformation as in Ref5] for the case of the Paulion chain

(q=-1):
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t t
a= qk; %c, al=clq" kZl Kk, (14

Here ciT,(ci) are the creation(annihilatior) operators of
spinless fermions at thigh site. The operatof3) is cast in
the form

(A i-1cicio+1/2Bcle)+AmaNeley

™ <

H=
2

+1/2B;clc;+H.c, (15)
whereN=3M .clc; is the number operator of the fermions.
To proceed we introduce the set of operafd®g—g which
are projection operators on the subspace$(ofodh) par-
ticles:

n—-1

1 ~
Pi=—2 q ""q"". (16
np:O
Making use of these projection operators with the obvious
propertyE,”;olP|=I we then obtain the following represen-

tation for the partition functioZ=Tr exd —B(H—uN)]:
n—1

z:IZEO Tr ex — B(H—uN)]P;, (17)

which allows us to replace in each term of the s(iii) the
multiplier gV in the Hamiltonian(15) by the numerical con-
stantq'. Moreover, sinceH andN commute, eaclpth term
of the expressior(16) for the projection operators can be
taken into account by a shift of the chemical potentiato
the valueu(P = .+ 27ipr/nB. This leads to the representa-
tion for the partition function,

n-1n-1
1

z=-> >

q "PTr exf— B(H = uPN)],
Ni=0 p=0

(18

whereH") areq'-periodical square fermionic Hamiltonians.
After making use of the standard results for the partition
function of a free fermion system we regain Hdg). The
calculation of the correlation function is more cumbersome
but straightforward as well.

Up to this point we did not use the functional integral
approach. However, it allows us to look at the problem from
another viewpoint and, furthermore, it is closely connected
with the modification of the calculations for the case of the
XY chain. Indeed, each term of the suy@8) can be repre-
sented in the form of a functional integral,

Tr ex;{—B(H(')—,u(p)N)]=f D&(r)DE(r)eSe

over the Grassmann fieldg(r),g(r) with antiperiodic
boundary conditionsg(B8) = —&(0), &(B)=—¢&(0) and the

action
B —d B
S|p=j0 dr[g ¢ +Jo dr

o

2mipr—
ng

HO(&,8) + péé

=S+ 5Sp . (19
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Under the change of variableg(r)— &(r)e™" GmP/nA) 7, Z=1(Tre PH"" 4 Tre—#H"

E(7)— £(7)e @A) 7 the |ast term of the previous expres-

sion, 8S,, disappears, which, however, is compensated by +Trre*5H(+)—Tr7—e*ﬂH(_)), (23
changing the boundary conditions for the fields of integra-

tion, whereH(*) coincide with the original Hamiltonian after the

AV - Pel P substitution7=(—1)N— = 1. Although the last two terms
£(B) q-"£(0),  &(B) 9°£(0) (20 cannot be calculated by changing the chemical potential, tak-

(a procedure of this type was used in REf6] to construct ing into accountr in them i_s also achieved by changing
the Feynman diagram technique for spin systers a re- boundary conditiong20). This was demonstrated in Ref.

sult we reach the following functional integral representation/17] in the framework of supersymnjeLric quantum mechan-
of the partition function: ics, where the operators and Trre 2t play the role of

supersymmetric involution and supersymmetric Witten index
n-in-1 _ of the HamiltonianH. That is why we term this theuper-
z=2 > q" J D&(1)DE(ne¥n, (21 symmetric trick
p=01=0 All of this returns us to Eq(21) with g=— 1, which after
provided with theqP-periodic boundary condition€0). In _the use.of the Bogoliubov transformation for thg variables of
this form the equation turns out to be valid for the case of thdntégration leads to formulel.1). We should mention that the

XY model for spin-1/2, although the justification needs tpSame trick can be used to calculate correlation functions.
attract other ideas. ’ In conclusion, we calculated exactly the partition func-

Let us clarify the problem arising in the case of tK¥ tions and correlators for systems of free particles with

model. Indeed, after the Jordan-Wigner transformatibf) g-deformed exchange statistics and the spin{X®2 model
the Hamiltonian(9) becomes the operator on a compact chain with periodic boundary conditions. We

demonstrated that the deformation of the statistics can be
M taken into account by changing the boundary conditions for
H=> (Aclc;_;+3Bicici+yclcl 1) +3Bicle, the fields of integration in the functional integral framework
=2 that leads to the transmutation of distribution functions. In
such a way deformed Fermi-Dirac functions appeared. We
also stated a conjecture about the form of thermodynamical
quantities in higher dimensions.

~A(= )Neley — (- 1)Nelel, + H.c., (22)

which differs from the Hamiltoniani15) by additional terms
with the anisotropy parameter They cause the Hamiltonian We wish to thank V. M. Agranovich, J. M. F. Gunn, and
to no longer commute with the number operator for particlesy s stepanenko for useful discussions. This work was sup-

N, which does not allow us to use the device of shifting theported by the Russian Fund of Fundamental Investigations,
chemical potential. However the Hamiltonian still commutesGrant No. 95-01-00548 and partiall§k.l.) by the U.K.

with the operatorr=(—1)N. This leads to the formula, EPSRC under Grant No. GR/J35221, Euler stipend of Ger-

which is analogous to Eq18), man Mathematical Society and Grant No. INTAS-939.
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